10 research outputs found

    Magnetic domain structure of epitaxial Ni-Mn-Ga films

    Full text link
    For the magnetic shape memory effect, knowledge about the interaction between martensitic and magnetic domain structure is essential. In the case of Ni-Mn-Ga bulk material and foils, a staircase-like magnetic domain structure with 90{\deg}- and 180{\deg}-domain walls is known for modulated martensite. In the present paper we show that the magnetic domain pattern of thin epitaxial films is fundamentally different. Here we analyze epitaxial Ni-Mn-Ga films by atomic and magnetic force microscopy to investigate the correlation between the twinned martensitic variants and the magnetic stripe domains. The observed band-like domains with partially perpendicular outof-plane magnetization run perpendicular to the microstructure domains defined by twinning variants. These features can be explained by the finite film thickness, resulting in an equilibrium twinning period much smaller than the domain period. This does not allow the formation of a staircase domain patter. Instead the energies of the magnetic and martensitic microstructures are minimized independently by aligning both patterns perpendicularly to each other. By analyzing a thickness series we can show that the observed magnetic domain pattern can be quantitatively described by an adapted band domain model of Kittel.Comment: 12 pages, 4 figure

    Influencing Martensitic Transition in Epitaxial Ni-Mn-Ga-Co Films with Large Angle Grain Boundaries

    No full text
    Magnetocaloric materials based on field-induced first order transformations such as Ni-Mn-Ga-Co are promising for more environmentally friendly cooling. Due to the underlying martensitic transformation, a large hysteresis can occur, which in turn reduces the efficiency of a cooling cycle. Here, we analyse the influence of the film microstructure on the thermal hysteresis and focus especially on large angle grain boundaries. We control the microstructure and grain boundary density by depositing films with local epitaxy on different substrates: Single crystalline MgO(0 0 1), MgO(1 1 0) and Al2O3(0 0 0 1). By combining local electron backscatter diffraction (EBSD) and global texture measurements with thermomagnetic measurements, we correlate a smaller hysteresis with the presence of grain boundaries. In films with grain boundaries, the hysteresis is decreased by about 30% compared to single crystalline films. Nevertheless, a large grain boundary density leads to a broadened transition. To explain this behaviour, we discuss the influence of grain boundaries on the martensitic transformation. While grain boundaries act as nucleation sites, they also lead to different strains in the material, which gives rise to various transition temperatures inside one film. We can show that a thoughtful design of the grain boundary microstructure is an important step to optimize the hysteresis

    Can gadolinium compete with La-Fe-Co-Si in a thermomagnetic generator?

    Get PDF
    A thermomagnetic generator is a promising technology to harvest low-grade waste heat and convert it into electricity. To make this technology competitive with other technologies for energy harvesting near room temperature, the optimum thermomagnetic material is required. Here we compare the performance of a state of the art thermomagnetic generator using gadolinium and La-Fe-Co-Si as thermomagnetic material, which exhibit strong differences in thermal conductivity and type of magnetic transition. gadolinium is the established benchmark material for magnetocaloric cooling, which follows the reverse energy conversion process as compared to thermomagnetic energy harvesting. Surprisingly, La-Fe-Co-Si outperforms gadolinium in terms of voltage and power output. Our analysis reveals the differences in thermal conductivity are less important than the particular shape of the magnetization curve. In gadolinium an unsymmetrical magnetization curve is responsible for an uncompensated magnetic flux, which results in magnetic stray fields. These stray fields represent an energy barrier in the thermodynamic cycle and reduce the output of the generator. Our detailed experiments and simulations of both, thermomagnetic materials and generator, clearly reveal the importance to minimize magnetic stray fields. This is only possible when using materials with a symmetrical magnetization curve, such as La-Fe-Co-Si
    corecore